Math 208 I, Midterm 1	Name:	
Signature:		
Student ID #:	Section #:	

- You are allowed a Ti-30x IIS Calculator and one 8.5×11 inch paper with handwritten notes on both sides. Other calculators, electronic devices (e.g. cell phones, laptops, etc.), notes, and books are **not** allowed.
- Some questions require you to explain answers: no explanation, no credit.
- Try to show your work on all questions: no work, no partial credit.
- You may use the back of the exam for scratch work: please submit any additional paper you use.
- Place a box around your answer to each question.
- Raise your hand if you have a question.

	1 2 3 4 5	/10 /10 /10 /10 /10 /50			
0.8 0.6 0.4 0 1 2 3	3 4 5				
Good Luck!					

- (1) A logistic curve is a curve in the (x, y)-plane defined by an equation of the form $y(1 + ae^{-x}) = b$. (See coverpage for an illustration.)
 - (a) (4pts) Write a system of linear equations in a, b that can be used to fit a logistic curve to the following values of (x, y): $(0, 1/3), (\ln 2, 1/2)$. (No need to simplify...yet.)

(b) (4pts) Solve this system (Hint: recall $e^0=1$, and $e^{-\ln x}=1/x$.)

(c) (2pts) How many equations can we add to this system without violating the existence of a solution? Explain.

(2) (a) (7pts) Determine a 2×3 matrix $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$ in reduced echelon form, such that z is a free variable and such that

$$\mathbf{x} = \begin{pmatrix} -1\\2\\0 \end{pmatrix} + s \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

is the general solution to the system

$$ax + by + cz = -1$$
$$dx + ey + fz = 2.$$

(b) (3pts) Consider the linear transformation associated to this matrix:

$$T_A(x, y, z) = \begin{pmatrix} ax + by + cz \\ dx + ey + fz \end{pmatrix}$$

Calculate $T_A(1, 1, 1)$.

(3) In each case below describe all values of t (when possible) for which the given vectors are linearly **dependent**. (2.5 pts each)

(a)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} \pi \\ 4 \end{pmatrix}$, $\begin{pmatrix} \sqrt{2} \\ 2024 \end{pmatrix}$, $\begin{pmatrix} t \\ 7 \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ t \\ 5 \end{pmatrix}$

(c)
$$\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$
, $\begin{pmatrix} 0\\-1\\1+t \end{pmatrix}$, $\begin{pmatrix} 1\\t^2-3\\\cos(t) \end{pmatrix}$

(d)
$$\begin{pmatrix} 0 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} t \\ t \\ 2 \\ 0 \end{pmatrix}$

- (4) Three friends go to the space needle. In geocentric coordinates, Emmy and Johann stand at positions $\mathbf{x}_1 = (2,0,0)$, $\mathbf{x}_2 = (1,1,0)$, respectively, and stare in the direction of vectors $\mathbf{v}_1 = (1,2,3)$, $\mathbf{v}_2 = (1,1,2)$, respectively, towards Olga on the observation deck (see coverpage for an illustration.)
 - (a) (4pts) Model this problem with a system of 3 equations in 2 unknowns.

(b) (4pts) Calculate Olga's position vector \mathbf{x}_3 .

(c) (2pts) Let A be the 3×2 coefficient matrix of the system from part a, and consider the associated linear transformation. Is T_A 1-1? Explain.

- (5) (a) (4pts) Write down the matrix representation of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that sends a point $(x, y) \in \mathbb{R}^2$ to the closest point on the x-axis.
 - (b) (2pts) Is the linear transformation from 5a) onto? Explain.
 - (c) (4pts) Write down the matrix representation of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that first reflects a vector across the y-axis, then rotates it 270° counterclockwise around the origin.