\qquad
Signature:
Student ID \#: \qquad Section \#: \qquad

- You are allowed a Ti-30x IIS Calculator and one 8.5×11 inch paper with handwritten notes on both sides. Other calculators, electronic devices (e.g. cell phones, laptops, etc.), notes, and books are not allowed.
- Some questions require you to explain answers: no explanation, no credit.
- Try to show your work on all questions: no work, no partial credit.
- You may use the back of the exam for scratch work: please submit any additional paper you use.
- Place a box around your answer to each question.
- Raise your hand if you have a question.

1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
T	$/ 50$

(1) A logistic curve is a curve in the (x, y)-plane defined by an equation of the form $y\left(1+a e^{-x}\right)=b$. (See coverpage for an illustration.)
(a) (4pts) Write a system of linear equations in a, b that can be used to fit a logistic curve to the following values of $(x, y):(0,1 / 3),(\ln 2,1 / 2)$.
(No need to simplify...yet.)
(b) (4pts) Solve this system (Hint: recall $e^{0}=1$, and $e^{-\ln x}=1 / x$.)
(c) (2pts) How many equations can we add to this system without violating the existence of a solution? Explain.
(2) (a) (7pts) Determine a 2×3 matrix $A=\left(\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right)$ in reduced echelon form, such that z is a free variable and such that

$$
\mathbf{x}=\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right)+s\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

is the general solution to the system

$$
\begin{aligned}
a x+b y+c z & =-1 \\
d x+e y+f z & =2 .
\end{aligned}
$$

(b) (3pts) Consider the linear transformation associated to this matrix:

$$
T_{A}(x, y, z)=\binom{a x+b y+c z}{d x+e y+f z}
$$

Calculate $T_{A}(1,1,1)$.
(3) In each case below describe all values of t (when possible) for which the given vectors are linearly dependent. (2.5 pts each)
(a) $\binom{1}{2},\binom{\pi}{4},\binom{\sqrt{2}}{2024},\binom{t}{7}$
(b) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}4 \\ t \\ 5\end{array}\right)$
(c) $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1+t\end{array}\right),\left(\begin{array}{c}1 \\ t^{2}-3 \\ \cos (t)\end{array}\right)$
(d) $\left(\begin{array}{l}0 \\ 2 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}t \\ t \\ 2 \\ 0\end{array}\right)$
(4) Three friends go to the space needle. In geocentric coordinates, Emmy and Johann stand at positions $\mathbf{x}_{1}=(2,0,0), \mathbf{x}_{2}=(1,1,0)$, respectively, and stare in the direction of vectors $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,1,2)$, respectively, towards Olga on the observation deck (see coverpage for an illustration.)
(a) (4pts) Model this problem with a system of 3 equations in 2 unknowns.
(b) (4pts) Calculate Olga's position vector \mathbf{x}_{3}.
(c) (2pts) Let A be the 3×2 coefficient matrix of the system from part a, and consider the associated linear transformation. Is $T_{A} 1-1$? Explain.
(5) (a) (4pts) Write down the matrix representation of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that sends a point $(x, y) \in \mathbb{R}^{2}$ to the closest point on the x-axis.
(b) (2pts) Is the linear transformation from 5a) onto? Explain.
(c) (4pts) Write down the matrix representation of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that first reflects a vector across the y-axis, then rotates it 270° counterclockwise around the origin.

